Lattice gauge notes VII

Review of GW: start with Wilson-Dirac operator Dy,. Select mass in supercritical region.
Does this have anything to do with the parity breaking discussed a couple weeks ago?
Then:
vsDws = Di,
V = Dy (D}, Dy + €)= /2
Viv =1
D=1+V
5D + Dvys — DysD =0

Then the fermionic action D) is invariant under

Wb — €i015(1-D)y,

B - Pt

Various points:

- measure not invariant

- several flavors, insert A matrix: measure invariant if TrA = 0
- exact zero eigenvalues of D define an index, n =nj, —n_

- this is a compact symmetry: 6 = 27 does nothing

- freedom in where to put the D: kinematic symmetry?

- mass term ma(1 — D/2)1 transforms nicely

To get a feeling for these matrices and their eigenvalues, study a two by two matrix example
with the GW structure. Take 75 of form

(1 0
=0 -1

D, = vDws

The Hermiticity condition is

A generic “Wilson” operator that satisfies this has four parameters. For a convenient
parametrization consider

DW — eia101/2+ia202/2(a0 + a30_3)eia101/2+ia202/2 — U((lo + 0130'3)U

where I define the unitary matrix

U — eia101/2+ia202/2



This makes
DI,VDW = UT(ag + a3 + 2apazo3)U

so the square root is easy to take, including the epsilon cutoff

0 1

-1 0
(Dly Dw) /2 = U ( Visatae)the ) U
vV (ao—ag)?+e?

and thus

0 ap—as

v/ (ap—az)?+e?

Note that the 5 hermiticity is maintained, even when the cutoff € is relevant.

___Ggotas 0
V = Dy (D}, Dy) ™/ :U(m )U

When ag+ a3 and ag — a3 are of the same sign, V = U2 and D = 1+ U?2. The eigenvectors
are the eigenvectors of

0 ay; — iag
a101 + a909 = .
a1 + tag 0

The eigenvalues of this are

0L =+y/a2 + a3
o—i$/2
by = (iez‘qﬁm)

with tan(¢) = az/a;. As desired 9z = 59+, and the eigenvalues of V are complex
conjugate pairs, with \ = e# = eFivaita;,

and the eigenvectors are

The other case corresponds to when ag + a3 and ag — a3 are of the opposite sign. Consider
ag+ az > 0 and ag — az < 0, so

1 0
V—U(0 _1>U—03

where I have used Uos = o3UT. Thus the eigenvalues are +1. This is the “instanton” case.

To study the transition between the cases, let ag pass through a¢ > 0. In particular, let
—1 <z <1 and consider

V:U((l) g) U=U(1+2)/2+ (1 - x)03/2

2



To proceed to a specific example, try

giving
(A4 c—z+cx)/2 —s(1+x)/2
V_< s(1+x)/2 (—1—|—c—}—x—|—cx)/2>

Look at
V-A=((Q+c—z+cx)/2-N((-14+c+z+cx)/2—N) +s*(1+z)%/4
=X = ANc+cx)+ (c+cex)?/d— (1 —2)2/4+ s> (1 +x)? /4
=AM —c(l+2)A+1+2)?/4—- (1 -2)%/4
=N -—c(l+z)A+2

Setting this to zero gives

cl+z)++/A1l+z)? -4z

A= 5

The eigenvalue crossing occurs at
Al+2z)?—dr=0=2+2(2c* —4) +

or

T

4 —2¢2 £ /16 — 16¢2
=== Coo2-2x2/1-¢2
c
The minus sign solution is the one that lies in the desired range. The other represents
ao + a3 changing sign.

Note that the general form of U here allows the eigenvalues to come in from anywhere on
the unitarity circle.

Now I will lead into domain-wall fermions by playing with getting solutions to something
in one more dimension.

To start consider a continuous extra dimension, and call it s. Put a step at zero by
considering a Wilson hamiltonian that depends on s. For s < 0 use the simple positive
mass Dy, but for s > 0 use a “negative” mass just as above for the GW case. When
some eigenvalue has its real part change sign, states will get bound to the surface. This
only occurs for the eigenvalues that get projected into the left half of the GW V operator.
This process is also a projection, but now of these eigenvalues onto the imaginary axis. All
other eigenvalues remain at large real part.



To see how the projection works, play with the toy Hamiltonian

d C e o
H = Y05 + me(s)yo + 0P - ¥

This is an operator on the original lattice space times the fifth dimension. Here p represents
the imaginary part of Dy, and m the real part.

For the s derivative to cancel the mass term, one should look at solutions of the form

Y = e—mlsmwo

For this to be normalizable (assuming m > 0), one wants 599 = +1o. Now ~yop - ¥
commutes with ~ys, so it can be simultaneously diagonalized. Its eigenvalues are A = +i|p|.
Thus we can pick g so that

’)’51/)3E = ‘HP(j)E
Yol - YE = Filp|yE

and the Hamiltonian acting on 9 gives

Hy™ = +p[y™*

The crucial point is that the eigenvalues of the five dimensional operator

d o
vyoH = gL + me(s) +ip -y
are the eigenvalues of the imaginary part ip’- ¥ whenever m(s) changes sign, but are O(m)
otherwise. Thus by having m(p, s) change sign for small p but not for large p, i.e. pick the
initial Dy in the right “circle”, then the doublers are gone.

The usual implementation takes s to a lattice with a Wilson hopping in the fifth dimension
involving projections (1+~5)/2. The gauge fields are kept four dimensional. The “positive”
mass side can be removed via K — 0, i.e. m — 00, so the modes become surface states.

- discussed by Shockley in 1939

from strongly coupled bands

- particle and anti-particle band

- gap closes and reopens at K., bottom states get stuck on walls

DW versus GW?

DW advantages:
- just Wilson fermions, easy to implement
- L5 a convenient control parameter



GW advantages:
- smaller matrices
- analytically cleaner?

Do we want K4 = K57 Probably not at strong coupling.

I want to follow through the Neuberger construction with this form to compare with the
above eigenvalues. Thus motivated, start with

Squaring this,
DiDy = m? + p?

gives the Neuberger operator

/p2 + m2
with eigenvalues
ey
A =14 m L ip

/p2 + m2
The real part makes this not quite the same as the domain wall approach above. For small

pand m <0
As = ip/m+ O(p°)

To go between the GW operator and the DW one, one should look at small scales.

It would be nice to have a cleaner relation between finite L, and the cutoff € above.



